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New finite-element schemes are proposed for investigating harmonic and non-stationary problems for composite elastic and 
piezoelectric media. These schemes develop the techniques for the finite-element analysis of piezoelectric structures based on 
symmetric and partitioned matrix algorithms. In order to take account of attenuation in piezoelectric media, a new model is 
used which extends the Kelvin model for viscoelastic media. It is shown that this model enables the system of finite-element 
equations to be split into separate scalar equations. The Newmark scheme in a convenient formulation, which does not explicitly 
use the velocities and accelerations of the nodal degrees of freedom, is employed for the direct integration with respect to time 
of the finite-element equations of non-stationary problems. The results of numerical experiments are presented which illustrate 
the effectiveness of the proposed techniques and their implementation in the ACELAN finite-element software package. © 2002 
Elsevier Science Ltd. All rights reserved. 

1. M O D E L S  F O R  T A K I N G  A C C O U N T  O F  A T T E N U A T I O N  
I N  P I E Z O E L E C T R I C  S T R U C T U R E S  

In modern finite-element packages the Rayleigh method is used, as a rule, to take account of the 
attenuation in composite, solid structures, in which the damping matrix Cuu is formulated in the form 

Cuu = ~, (~djMuuj +~djKuuj) (1.1) 
J 

where Muu j and Kuu j are the mass and stiffness matrices for the medium f2/, C~dj and ~dj are non-negative 
attenuation factors. Relation (1.1) is obtained assuming the Kelvin model for taking account of the loss 
in the medium f2j 

o" = ej..(~ + f~ajiE) (1.2) 

and the addition of the term o~a/P/d to the inertial term 9jii in the equations of motion. Here, o- and • 
are the second-rank stress and deformation vectors, ej is the semi-symmetric, fourth-rank modulus of 
elasticity tensor, pj is the density and u is the displacement vector. 

In the subsequent dynamic finite-element analysis of solid structures it is often found to be convenient 
to use the method of expansion with respect to the oscillation modes Wk, which has been orthonormalized 
with respect to the mass matrix M,u = ~,jMuu/and are orthogonal with respect to the stiffness matrix 
Kuu = ZjI,:uuj, 

W m . M . . W  k=Smt ' Wm Ku .Wt 2 • = o),fi,,~ (1.3) 

where ~mk is the Kronecker delta and fllm is the natural frequency corresponding to the eigenvector 
W m • 

If, in relation (1.1) 

adj = ~d, ~dj = ~d for any j, (1.4) 

then, by virtue of equalities (1.3), the vectors Wk turn out to be orthogonal with respect to the damping 
matrix Cuu 
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l ( ld  + 01 m 
Win" Cuu " Wk = 2~dmOJm~mk, ~dm = 20~m --~-~d 

The coefficients ~drn a r e  referred to as the attenuation factors of the modes. They are associated in 
a simple manner with the mechanical Q-factor for the individual modes: Q,, = 1/(2~a,,). 

We will now extend the Rayleigh method for taking account of attenuation, which has been described 
above, to structures containing elastic and piezoelectric media. In the case of elastic media ff2j = ~2ej , 
we shall, as before, accept the defining relations (1.2). In the case of piezoelectric media f2j = f2pj, we 
shall assume that the mechanical stress tensor ~ and the electric induction vector D are related to the 
deformation tensor ¢ and the electric field strength vector E by the equations 

O" = cy. . (e  + [~dj~)-e;. E (1.5) 

D + ~dD = ej . .  (E + ~a,~) + ~S. E (1.6) 

where ej is the third-rank piezo-moduli tensor, E s is the second-rank permittivity tensor and ~a ~ 0 is 
the attenuation factor which reflects the electrical losses. 

This model extends the Kelvin model (1.2) to the case of piezoelectric media. When ~a = 0 in Eq. 
(1.6), we have the more particular model for taking account of attenuation in piezoelectric media which 
is adopted in several well-known finite-element packages such as ANSYS [1] and COSMOS/M [2]. When 
~a = 0 in Eqs (1.5) and (1.6), it is as if only mechanical damping is taken into account. It is true that, 
by virtue of the coupled state of the mechanical and electric fields, the attenuation effects will also extend 
into the electric fields when ~a = 0. 

The main inadequacy of model (1.5), (1.6) when ~a = 0 lies in the fact that, in the implementation 
of the method of expansion in modes, the system of finite-difference equations will not be split into 
independent equations for the individual modes, since the eigenvectors Wk will not be orthogonal with 
respect to the damping matrix Cuu which is obtained. As a result, to split the equations it is necessary 
to use a special form of the damping matrix which does not follow from model (1.5), (1.6) when ~a = 
0 [3, 4]. Model (1.5), (1.6) w h e n  ~dj ~--- ~d, which has been analysed for some time past [5, 6], removes 
this shortcoming. It has been shown [5] that the model obtained satisfies conditions which ensure the 
dissipation of energy, and the possibility of splitting the finite-element system into independent equations 
for the modes has been demonstrated [6] for the case of harmonic oscillations. 

The essence of model (1.5), (1.6) when ~dj = ~d can be seen more clearly from the different form of 
the governing relations connecting the pair {e, D} with the pair {(~, E}, 

o" = c ° . .  (e + ; d ~ ) -  h}. (D + taD) (1.7) 

where 

E = - h j . .  (E + ~d t)  + 13 S" (D + ~dD) 

ej. ef--ey 

(1.8) 

Hence, both the model adopted in ANSYS as well as model (1.7), (1.8), which allow the system of 
finite-element equations to the split, follow as special cases from model (1.5), (1.6). 

We note that, in the case of piezoelectric media, it is also possible to use integral models to take 
account of the attenuation, which generalize the usual integral models of viscoelastic media. However, 
such approaches in the finite-element analysis of non-stationary problems lead to extremely complex 
computational schemes [7]. The almost complete lack of experimental data on the relaxation moduli 
of piezoelectric media also prevents the use of integral models of attenuation. 

2. F I N I T E - E L E M E N T  E Q U A T I O N S  F O R  
A N A L Y S I N G  P I E Z O E L E C T R I C  D E V I C E S  

We shall assume that a piezoelectric device is a solid f2 consisting of N homogeneous domains ~j  (j = 
1, 2 . . . . .  N), generally speaking, with different piezoelectric or elastic properties. We shall assume that, 
in the domains ~j  = £2pj with piezoelectric properties, the displacement vector u(x, t) and the electric 
potential ,,0 (x, t) satisfy the system of equations (fj is the mass force density vector) 
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pjii+ aajp?" - 7.  ~r = fj (2.1) 

V . D = 0  

for the governing relations (1.5), (1.6) and the formulae 

e = (Vu + V u * ) / 2 ,  E = -Vtp 

(2.2) 

(2.3) 

The usual equations (2.1) and (1.2), taking attenuation into account in accordance with Rayleigh's 
method, are taken for the domains f2 i = g2e,, filled with elastic materials without piezoelectric properties. 

The formulations of non-stationary problems of electro-elasticity have to be supplemented with the 
boundary conditions on the external boundary F = Og2; f~ = ~jg2j and the conditions of rigid contact 
on the boundaries Fit = F i n  Fl of the adjoining media f2 i and g21. Here, we shall permit all the basic 
types of boundary conditions of electro-elasticity including free electrodes and electrodes which are 
powered by current generators [8]. In the case of non-stationary problems it is also necessary to specify 
the initial conditions for the displacements and velocities 

u(x,+O) = Uo(X), u(x,+O) = Uo(X) (2.4) 

In order to solve initial-boundary-value problems of electro-elasticity, we shall use the finite element 
method in the classical Lagrangian formulation. We choose a matching mesh of finite elements in the 
domains fZhj which approximate the domains g2j. In this mesh of finite elements, we approximate the 
unknown field functions u and ~0 in the form 

u(x,  t) = N,*, (x) .  U(t),  ~o(x, t) = N ~ ( x ) - O ( t )  (2.5) 

where N* is the matrix of the form functions for the displacement field, N~p is a row vector of the form 
functions for the potential field and U(t) and *( t )  are the global vectors of the nodal displacements 
and potentials. 

The standard semi-discrete finite-element approximation of the generalized formulations of non- 
stationary problems (2.1)-(2.4), (1.5), (1.6), including the basic, main and natural boundary 
conditions, leads to the following system of differential equations 

Muu. [J + C.u .  0 + K . . .  U + Kuq , . O  = F. (2.6) 

with the initial conditions 

(2.7) 

U(O) = U o, I)(O) = I3 o (2.8) 

which are obtained from the corresponding continual conditions (2.4). 
The finite-element mass matrix Mu,, damping matrix Cuu and stiffness matrix Kuu are the same as 

in the structural analysis. In particular, in the case of the damping matrix we have representation (1.1). 
All of these matrices are symmetric and non-negative definite and, moreover, Muu > 0. The finite- 
element matrices Kucp and I~cp are due to the piezoelectric effect and reflect the piezoelectric and 
dielectric properties. Moreover, the matrix K ~  is symmetric and non-negative definite: K ~  t> 0. The 
vectors Fu and F~ are formed as a result of taking account of the mechanical and electrical effects. Here, 
the main boundary conditions require additional transformations of the systems of finite-element 
equations (2.6), (2.7). We shall assume that such transformations in (2.6) and (2.7) are carried out using 
the techniques in [9], which preserve the structure of the finite-element matrices. 

We note that, in the case of harmonic problems, when external actions vary as exp[ic0t], it is obvious 
from (2.6) and (2.7) for the amplitude values, that we have a system of linear algebraic equations with 
the symmetric matrix 

-o)2Mu.  • U + i¢oC~. - U + K.u • U + K . ¢ .  • = F. (2.9) 

K ~ -  U - (1 + iO~d )-I K,~, .  • = F~o (2.10) 
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3. T H E  M E T H O D  OF E X P A N S I O N  IN M O D E S  

Following the previously developed approach [3, 4, 6], we will now consider the special features of the 
use of the method of expansion in modes, which is the classical finite element method, in problems of 
electroelasticity. Here, the use of the model to take account of attenuation (1.5), (1.6) when f3aj = ~d 
will be a new aspect. Moreover, unlike in [3, 4, 6] where a problem of steady vibrations was considered, 
below we describe a method of expansion in modes for non-stationary problems. 

Suppose {0~ k, W k} (k = 1, 2 . . . . .  n, where n is the dimension of the matrices Muu and Kuu ) are pairs 
of natural frequencies (electrical resonances) 6% and the eigenvectors (normal modes) Wk 
corresponding to them, which are non-trivial solutions of homogeneous problem (2.9), (2.10) when there 
is no damping (CCdj = [3dj = ~d = 0). This problem is equivalent to the generalized eigenvalue problem 

- t o 2 M u u  • U + Kuu " U = 0 (3.1) 

where 
D _ |  , 

Kuu = K.~ + K~¢ • K¢¢. K~¢ (3.2) 

with symmetric matrices Muu > 0 and Kuu ~ O. Since a matrix Kuu, which differs from the matrix Kuu, 
occurs in equality (3.1), the eigenvectors Wk will now actually be orthogonal to the matrix ~,uu, that is, 

2 
* = COmSmk (3.3) 

Note that the methods of determining the natural frequencies 0~k and the eigenvectors Wk, which 
use algorithms for solving generalized problems in the case of sparse matrices as well as their 
implementation in the ACELAN finite-element package, have been described previously [3, 10]. 

We will assume that the conditions Otdy = ~d; 13dj = ~d, for any j, are satisfied in the case of the 
attenuation factors ~dy, 13dy, and ~d of the initial model of a piezoelectric device (2.1), (1.5), (1.6). In 
the vectors F u and F~0, we separate out the components V associated with the specified values of the 
electric potential. As a result, system (2.6), (2.7) can now be represented in the form 

Mu,-(LI + o~dl) ) + Ku~. (U + {d0) + K ~ .  • = F~ (3.4) 

K*~o. (U + ~dU) - K~, .  • = F~o ~ (3.5) 

where 

F~o =Fu-Kuo-V,  F¢~ =F~ +;dF,  +K¢v .V (3.6) 

Note that the values of the electric potential, which appear in the expression for the vector V, were 
assumed to be equal to zero in problem (3.1) and, hence, the corresponding degrees of freedom of the 
electric potential do not appear in the vector ~ .  

From relation (3.5), • can be expressed in terms of U 

- I  * = K ~ .  Ku,. (U + ~dO) + ~q (3.7) 

• q is actually determined from the separate "quasielectrostatic" problem 

K~p. ~ =-Fcv (3.8) 

Using expression (3.7), Eq. (3.4) can be rewritten in the form 

Muu-(tl + O~dlJ ) + Kuu" (U + ~d 0)  = F~ - K~¢ .~q (3.9) 

We shall seek the solution U of problem (3.9), (2.8) in the form of an expansion in modes 

U = ~ Zk(t)W k (3.10) 
k = l  



New schemes for the finite-element dynamic analysis of piezoelectric devices 485 

Substituting this expansion into Eq. (3.9), multiplying the resulting equality scalarly by W~ and using 
the relation for the orthogonality of the eigenvectors with respect to the matrices Muu and Kuu, we obtain 
scalar differential equations for the individual functions Zk( t ) .  Solving these equations, we find 

l t 
Zk = =--  I Pk ( x) e-{*~'k ('-~) sinImk (t - x)ldx + A k (0)e -{*='` sin(Nkt + 5 k ) 

¢0k b 
(3.11) 

p, = w ; . ( v . , - K . , . % ) ,  ¢,  = 
ZOJ k Z 

mk =£0k(1-~2) ~, Ak(0)=[Z2(0) 4 (2~(0)+gkt°tcZ'(0))2~ "j ]~ 

z , ( o ) ~ k  
5 k = arctg 2~t, (0) + ~ktOkZj, (0) 

Z~(0)=W~-M.u.U o, 2~(0)=W~.M=..O o 

Hence, the solution of problem (3.4)-(3.6), (2.8) using the method of expansion in modes is given 
by formulae (3.10) and (3.11) for U, and (3.7) and (3.8) for ~.  

In the part involving finding the vector U, the method which has been presented is identical in many 
respects to the classical version of the method of expansion in modes in linear dynamic problems of 
the mechanics of a deformable solid. The orthogonality of the vectors Wk with respect to the matrix 
Cuu = adMuu + ~dg, uu, that is ensured by the damping model which has been adopted, considerably 
facilitates the splitting of the equations here. The coefficients ~ in (3.11) are the damping factors of 
the modes, and, using them, it is possible to determine approximately the attenuation factors c~ d and 
~d for the whole piezoelectric device. The implementation of the method in problems of non-stationary 
oscillations is now obvious (also, see [6] and [3, 4] when ~d = ffd). 

4. THE NEWMARK SCHEME FOR SOLVING 
NON-STATIONARY PROBLEMS 

The method of expansion in modes requires equality of the damping parameters for the different media 
(that is, that relations (1.4) are satisfied) and, also, homogeneity of the main boundary conditions for 
the displacements u(x, t). Methods of direct integration with respect to time are more general. In the 
same way as described earlier in [9], we shall use the Newmark method for integrating Cauchy problem 
(2.6)-(2.8) with respect to time in a formulation in which the velocities and accelerations in the time 
layers do not explicitly appear. 

The usual Newmark scheme [1, 11] is based on the following expansions of the vector functions 
ai+l = a(ti+l), a i + l  = a(ti+l), a = {U, @} (t  i = ix; x = At is the time step size) 

a~+ I = a i + xi~ i + ( ~  - ~) , t z f i i ,  a/+l  = a~+ l + ~x,2~ii+l 

af+) = ,i~ + (I - T)xa; ,  i.i+ I = aF+l + ' f f ~ m  

(4.1) 

where [3 and ~, are parameters of the Newmark method. 
We now introduce the averaging operator Yi 

2 

Yj a = Z 13kaj+l-k (4.2) 
k=O 

where 

Po=P, P~=~'+-21~, P2=~'_+13; ~'±=½-+~, 

The following lemma holds. 
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Lemma. Suppose the quantities ai, 6i, ai, a/p and fi/P are connected by relations (4.1) and (4.2) for all 
i ~ N. The equalities 

Yi ap = ~+ai + ~_ai_l; Yi/Ip = (ai - ai_ I )1 '~ 

Yi sl = (,~11i+ 1 - ( 2 T -  i)ai -(1 - T)ai_l )1 '[ (4.3) 

Yi il = (ai+ I - 2 a / +  a/_l)/'C 2 

then hold. 
It is also easily shown that the quantities Yfii and Yifi can be expressed in terms of Yi ap, Yi tip and 

Yia using the formulae 

Yiii=~2 (Yia-YiaP), Yii,=-~(Yia-YiaP)+ YiiaP (4.4) 

We now act on Eqs (2.6) and (2.7), which have been written at the instants of time t i, with the averaging 
operator Yi (4.2). When expressions (4.4) are taken into account, we obtain the following solving systems 
of linear algebraic equations for each time layer 

' • Y, u .  K,,p. Y, * = V. 

where 

K,*,¢'YiU- 1 + ~  K~'YiO--F~eff  
(4 .5)  

fjx2 u, + Cuu + Kuu 

Feff -- Yi Fu +Muu'Yi UP +Cuu "(~ Yi UP-Yi f'-JP] 
/ 

j 

expressions of the form of the first two relations of (4.3) hold for Yi Up, Yi(.J p, YiF p and Yi #p, expressions 
of the form (4.2) hold for YiFu and YiF~0, and a further formula is required for the transition to the 
following time layer 

a i +  1 = ( Y i  a - ~ l a i  - [~2ai_ l  )/[3 ( 4 . 6 )  

which follows from (4.2). 
The system of equations (4.5) in the vector of the averaged nodal unknowns {YiU, Yi~} is written 

in symmetric form with the matrix K eff of the saddle structure [9] 

IIK:  f I 
Keff =ILK* -(1 +;aT/[3Z)-IKc¢ 

This matrix can be factorized using the square root method [9], and then only systems of linear 
algebraic equations with lower and upper triangular matrices can be solved in each time layer. 

According to the lemma, the Newmark scheme presented here is mathematically equivalent to the 
usual Newmark scheme with velocities and accelerations [1, 11], and, consequently, it is absolutely stable 
when [3 I> (1/2 + ~t) 2 / 4, ?/> 1/2 and, when 13 t> 1/4, ~/= 1/2, it does not have an approximation viscosity 
[11]. However, the Newmark scheme (4.5)-(4.6) does not explicitly use velocities and accelerations, 
which is preferable in the case of the electroelasticity problems considered here, when there are no 
velocities and accelerations of the electric potential in the equations. 

Note that the Newmark method in its conventional formulation has been used to integrate the finite- 
element method equations with respect to time for plane electroelasticity problems, taking account of 
losses, in [12, 13] and in other papers by the same authors. 
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5. N U M E R I C A L  EXPERIMENTS 

The method for the finite-element analysis of harmonic and non-stationary problems which has been 
described has been implemented in the ACELAN package, that was specially designed to analyse 
piezoelectric devices [14]. In ACELAN, a set of partitioned saddle algorithms is used for the different 
finite-element procedures and for solving matrix problems in the finite element method [3, 9], and the 
schemes which have been described above are therefore embedded in an optimal manner in the overall 
ideology of the package. 

As an example, consider a cylindrical rod of length l = 0.040567 m and radius R = 0.002 m. We relate 
the rod to a Cartesian system of coordinates OXIX2X3, directing the x 3 axis along the rod axis and locating 
the xl and x 2 axes in the plane of its lower end. Suppose the rod is made of PZT-4 piezoceramic, polarized 
along its length. The ends of the rod are assumed to be completely made into electrodes and a potential 
difference Acp = V(t) is applied to them. We shall assume that the lower end x 3 = 0 is rigidly damped 
and that the remaining faces of the rod are free from mechanical stresses. 

In the case of the action of a harmonically varying potential difference V = Vo exp [i2~ft] of frequency 
f = tz/(2n), we have a problem of steady vibrations. We shall consider frequenciesfwhich are close to 
the first frequencies of electric resonance frl and antiresonance fal. It is well known that, for the case 
when the vibrations occur in piezorigid modes, the most important integral characteristic of the rod is 
the value of the electric impedance 

Z = £ =  V R 
, Q=-27tj" D3dr for x3=l  

i itoQ o 

where I is the current and Q is the charge on the upper electrode. 
Close to the first resonance frequencies it is possible to use the one-dimensional theory for a 

longitudinally polarized piezoelectric rod. In the approximation of this rod theory, in the case of the 
damping model (1.7), (1.8), (2.1), the following representation can be obtained for the electric impedance 

I+i;dtO [l_k23tgal] 
Z= i~C0(1 _k23 ) - - ~ - ]  (5.1) 

~R2 ET3 ~ ' ~ = ~  [O)2--ietd 00 
CO= 1 ' U?3~ l+i;d¢O 

The electromechanical coupling coefficient k33 and the longitudinalvelocity v~ are determined using 
the usual formulae for electroelasticity [8]. 

We will also solve the problem of the harmonic vibrations of a rod which has been described 
numerically in an axisymmetric formulation using ACELAN. 

We will determine the damping coefficients eta and 13d = ~d of the model (1.7), (1.8), (2.1) by a method 
which uses the value of the Q-factor for two modes. We shall assume that the Q-factors of the rod at 
resonance frequencies Offrl = 18.867 kHz and fr2 = 73.345 kHz are identical and equal to 500. The 
coefficients cta and ~d can then be approximately calculated using the formulae in [3], which are the 
usual formulae in the case of the method of expansion in modes 

O~d = 2nfrlfr2 , ;d = l (5.2) 
frl + fr2 2g(frl + fr2 ) 

which gives ad = 190 S -1 and ~d = 0.345 X 10 -8 S. 
The results of ACELAN calculations of the dependence of the real part (Re Z) and imaginary part 

(Im Z) of the electrical impedance Z on the frequency close to the first electrical antiresonance frequency 
fal are shown in Fig. 1 (V0 = 103 V). 

An unstructured finite-element mesh consisting of 90 triangular, square, piezoelectric, axisymmctric 
elements with a maximum diameter h = 0.002 m was used in the ACELAN calculations. Here, the total 
number of mesh points of the finite-element partitioning was equal to 229. 

Graphs of Re Z and Im Z, obtained using formulae (5.1) for one-dimensional rod theory, are shown 
for comparison by the dashed curves in Fig. 1. The visual difference between the solid and dashed curves 
is explained by the small frequency step size. At the same time, the percentage difference between them 
is extremely small. For instance, the first antiresonance frequency, close to which the maximum in 
Re Z is observed, is equal to 25,039 Hz in the ACELAN calculations while, using the rod model, it is 
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25,000 Hz, that is, it is only 0.16% less. It can therefore be concluded that, in the neighbourhood of 
the first antiresonance frequency, rod theory enables one to determine the impedance Z of the 
piezoelectric transducer being considered with sufficient accuracy. 

We also note that, in the three-dimensional or axisymmetric formulations for the model (1.7), (1.8), 
(2.1), it would be logical to specify the damping coefficients ccd and ~a as in the one-dimensional 
approximation. This enabled us to obtain practically identical amplitude values of Re Z and Im Z both 
in calculations of the axisymmetric problem using the finite element method and in calculations using 
the formulae of rod theory. Meanwhile, in the case of the model (1.7), (1.8), (2.1) when ~d = 0, that 
is, the model adopted in ANSYS, the problem of determining the damping constants is considerably 
more difficult compared with one-dimensional problems. Some rather unwieldy formulae for calculating 
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C~d and 13d have been suggested in [3] (in this case, an error in formulae (5.2) for 13d in [3] has been 
admitted and, in order to remove this error, it is necessary to interchange the positions of the Q-factors 
Q1 and Q2)- 

We will now consider the same problem for a rod but in the non-stationary formulation. Suppose a 
potential difference V(t) is applied to the electrodes of the rod in the form of the following impulse: 
V = Vo[H(t ) - H( t  - to)], where H(t)  is the Heaviside function, V 0 = 103 V and t o = 0.25 x 10 -5 s. The 
initial conditions (2.4) are taken to be null conditions. 

When there is no attenuation, the non-stationary problem for the rod in the one-dimensional 
approximation has an exact solution which can be constructed, for example, by the method of reflected 

- refracted waves and, when account is taken of the first three reflections, this solution is given by 
formulae which contain the characteristic exponential terms 

u3(x3, t) = )~lu(z, t), (~33(X3, t) = ~(s3~) -I ~(Z, t) 

x=V0 ° ~ l l ,  Z=X311, " ¢ = t l T  O, ~0=t0/T0, T o = l l u  ~ 

u(z, "c)= k3a( F(z, x ) -  F(z, "C- Xo) ), x < 4  

G(z, "Q = U,z(Z, x)-o~u(I, "c)- k33H('~), o~ = k23 

F(z, "¢) = ~, + H(x - 1 + z)(e atx-I+-z) - i) + 
+ 

+~. + H ( x - 3 + z ) { [ 1 - 2 a ( x - 3 + z ) ] e  atT-3+-:) - I} 
± 

(5.3) 

It can be seen from the structure of formulae (5.3) that the piezoelectric effect considerably 
complicates the wave pattern in the rod compared with the purely elastic case. 

The non-stationary problem was also calculated in the axisymmetric formulation using ACELAN. 
The time step was taken to be equal to At = 0.25 x 10 -6 s and the finite-element mesh was taken to be 
the same as in the problem of steady vibrations. 

Graphs of the axial displacement u3 at the centre of the upper end and the axial stresses (~33 at the 
centre of the lower end are shown in Fig. 2. The graphs in Fig. 2(a) and (c) were obtained ignoring 
damping, that is, when ~d = 13d = ~d = 0. The results of calculations for the axisymmetric problem are 
shown by the solid curves in Fig. 2(a) and (c), and the solution of the one-dimensional problem, 
constructed using formulae (5.3), is shown by the dashed curves. Since both the wave motions of the 
rod along its axis as well as the waves reflected from the end face are taken into account in the 
axisymmetric problem, the difference between the solid and the dashed curves is completely 
understandable. Nevertheless, it can be seen that, in the non-stationary case, the solutions obtained 
using the finite element method, as implemented by ACELAN and using rod theory, are found to be 
quite close. 

ACELAN results, obtained taking damping into account in accordance with (1.7), (1.8) and (2.1), 
are shown in Fig. 2(b) and (d). The solid curves in Fig. 2(b) and (d) correspond to the results of 
calculations using the actual values of the damping coefficients c~ d = 190 s -1 and Ca = 0.345 x 10 -8 s 
for PZT-4 piezoceramics calculated using relations (5.2). 

It is clear from a comparison of Fig. 2(b) and (d) and Fig. 2(a) and (c) that, in the problem 
considered, the actual attenuation for short times only slightly changes the wave pattern. On artificially 
increasing the coefficients (z d and ~d by a factor of 100, we obtain the significantly smoother graphs of 
the displacements and stresses with smaller amplitudes represented by the dashed curves in Figs 2(b) 
and (d). 

The example presented above was also chosen with the aim of comparing the results of numerical 
calculations obtained using the ACELAN software package with the analytical solution. We see that, 
in the case of the same attenuation coefficients ad and 13d (~d = 0), different ACELAN results were 
compared with the analogous results obtained using the ANSYS programme and practically identical 
results were obtained. 
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K. A. Nadolin and A. S. Skaliukh, and whose results were used in carrying out the calculations. 
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